
1 7 D-R122 293 ASYMPTOTIC AND NUMERICAL METHODS FOR VECTOR SYSTEMS OF 17/i
SINGULARLY-PERTUJRB..(U) ARMY ARMAMENT RESEARCH AND
DEVELOPMENT COMMAND WATERVLIET NY L..

UNCLASSIFIED J E FLAHERTY ET AL. OCT 82 ARLCB-TR-8283i F/G 12/1, N

END



.4

960

11.8

1 .1I 25 A11 &. 111.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS- 1963-A



IADZA- Li 7J

TECHNICAL REPORT ARLCB-TR-82031

04

ASYMPTOTIC AND NUMERICAL METHODS FOR VECTOR SYSTEMS

OF SINGULARLY-PERTURBED BOUNDARY VALUE PROBLEMS

Joseph E. Flaherty
Robert E. O'Malley, Jr.

October 1982

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
LARGE CALIBER WEAPON SYSTEMS LABORATORY

p V BENT WEAPONS LABORATORY

WATERVLIET, N. Y. 12189

AMCMS No. 61110191A0011

DA Project No. 1L161101A9A

PPON No. 1A2231491A1A

DTIC, CT
,.APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED DEC 0 101 2 M

8
li*g i1 08 060



DISCLAIMR

The findings in this report are not to be construed as an official

Department of the Army position unless so designated by other author-

ized documents.

The use of trade name(s) and/or manufacture(s) does not consti-

tute an official indorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it

to the originator.

4

4'

.



SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

• ARLCB-TR-82031 Ab" ['A la P a-. q, -I

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

ASYMPTOTIC AND NUMERICAL METHODS FOR VECTOR
SYSTEMS OF SINGULARLY-PERTURBED BOUNDARY VALUE
PROBLEMS 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER()

Joseph E. Flaherty, USAARRADCOM and RPI
Robert E. O'Malley, Jr., RPI

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

US Army Armament Research & Development Command AMCMS No. 61110191A001I
Benet Weapons Laboratory, DRDAR-LCB-TL DA Project No. IL161101A9A
Watervliet, NY 12189 PRON No. IA2231491AIA
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Armament Research & Development Command October 1982
Large Caliber Weapon Systems Laboratory 13. NUMBER OF PAGES

Dover, NJ 07801 24
14. MONITORING AGENCY NAME & ADDRESSIf different from Controlllng Office) IS. SECURITY CLASS. (of this report)

"4 UNCLASSIFIED

15a. DECL ASSI FI CATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

To be published in the Proceedings of US Army Numerical Analysis & Computers
Conference, 3-4 February 1982. This Research was partially sponsored by US
Air Force Office of Scientific Research, Air Force Systems Command, USAF and by
the Office of Naval Research.
IS. KEY WORDS (Continue on reveree side it neccery and Identify by block number)

Asymptotic Analysis Numerical Analysis
Singular Perturbations Collocation
Nonlinear Two-Point Boundary Value Problems Nonlinear Beams

26. AT'NACT (Ontbas m revere, oe f nmes md Identify by block number)

Procedures are developed for constructing asymptotic solutions for certain non-
linear singularly-perturbed vector two-point boundary value problems having
boundary layers at one or both end points. The asymptotic approximations are
generated numerically and can either be used as is or to furnish a two-point
boundary value code (e.g. COLSYS) with an initial approximation and a nonuniform
computational mesh. The procedures are applied to several examples involving
the deformation of nonlinear elastic beams.

DD JA 1473 T OF INov6SIsOSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dots Entered)



TABLE OF CONTENTS

Page

1. INTRODUCTION I

2. ASYMPTOTIC APPROXIMATION 4

3. NUMERICAL PROCEDURE 8

4. EXAMPLES 11

* 5. DISCUSSION 16

REFERENCES 19

TABLES

I. NONLINEAR ELASTICALLY SUPPORTED BEAM. NUMBER OF SUBINTERVALS 14
(NSUB) AND CP TIMES USED TO SOLVE THE PROBLEM BY COLSYS WITH
CONTINUATION IN e. THE TOTAL CP IS THE ACCUMULATED TIME FOR'

THE e SEQUENCE.

II. NONLINEAR ELASTICALLY SUPPORTED BEAM. NUMBER OF SUBINTERVALS 14
(NSUB) AWD CP TIMES TO SOLVE THE PROBLEM BY SPCOL AND OBTAIN
AN IMPROVEMENT BY COLSYS. THE CP TIMES FOR SPCOL INCLUDE THE
TIME TO CALCULATE THE REDUCED SOLUTION WHICH WAS 4.8 TIME
UNITS. CORRECTION NO. 1 USES THE MESH THAT WAS RECOMMENDED
BY SPCOL. CORRECTION NO. 2 USES A MESH THAT IS TNICE AS
COARSE. THE TOTAL CP IS THE SUM OF THE TIMES FOR THE SPCOL
AND COLSYS SOLUTIONS.

III. NONLINEAR ELASTICALLY SUPPORTED BEAM. DIFFERENCES BETWEEN 15
SPCOL AND COLSYS SOLUTIONS, WHERE A( ) :- I( )SPCOL-( )COLSYS I.

LIST OF ILLUSTRATIONS

1. Geometry, loading, force, and mment conventions for nonlinear 21
beam.

2. Numerical solution of elastically supported beam with boundary 22

conditions given by Equations (29).

3. Numerical solution of elastically supported beam with boundary 23
conditions given by Equations (32). Note that Y1 and Y2 are
multiplied by c.

' i
C)C

rk .4



1. INTRODUCTION

We consider singularly-perturbed two-point boundary value problems for

nonlinear vector systems of the form

x - f(xyt*) , Ey - g(x,y,t,e) , 0 < t < I (1a,b)

a(x(O)-,y(O),c) - 0 , b(x(1),y(l),c) = 0 (1c,d)

where x, y, a, and b are vectors of dimension m, n, q, and r = m + n -q,

- -respectively. We seek to find limiting solutions of problem (1) as the small

positive parameter c tends to zero; however, to do this in complete generality

is very difficult and beyond the grasp of our current understanding. Thus, we

simplify problem (1) considerably by assuming, in addition to natural smooth-

ness hypotheses, that (i) g, a, and V are linear functions of the fast

variable y, i.e.

g(x,y,t,e) w gl(x,t,£) + G2(x,t,£)y (2a)

a(x(O),y(O),e) - al(x(0),e) + A2(x(0),c)y(0) (2b)

b(x(l),y(1),e) - bl(x(1),c) + B2(x(1),)y(l) (2c)

(ii) that G2(xt,e) has a hyperbolic splitting with k > 0 stable eigenvalues

and n - k > 0 unstable eigenvalues for all x and 0 4 t 4 1, and (iii) that q >

k and r > n - k.

With the assumed hyperbolic splitting, we wuld expect y to vary rapidly

.A relative to (the slow vector) x in narrow boundary layer regions near both t

0 and 1. We thus seek limiting solutions having the form

x(t,c) - X(t) + () , y(t, ) - Y(t) + P(T) + v(a) + () (3a,b)

• where the initial layer correction p(T) and the terminal layer correction

v(o), respectively, decay to zero as the stretched variable

T - t/C or o - (1-t)/c (4a,b)

e



tend to infinity. The limiting. solution X(t), Y(t) within 0 < t < I must

necessarily satisfy the reduced system

X f(X,Y,t,O) , 0 = g(X,Y,t,O) (5a,b)

Because G2 is everywhere nonsingular, we can use Eqs. (2a) and (5b) t,)

"" determine

Y(t) = -G2-1(X,t,0)g1 (X,t,O) (6)

- in a locally unique way, and there remains the mth order nonlinear lifferel-

tial system (Eq. (5a)) for determining X(t).

In order to completely specify the reduced solution we must prtascrtbe m

boundary conditions for equation (5a). We do this by providing a

cancellation law" which selects a combination of q-k initial conditions (EJ.

(2b)) and of r - n + k terminal conditions (Eq. (2c)) to be satisfied by X arif,

- Y. In Section 2 we present a numerical procedure for determining the boundar,

,* conditions for the reduced system that uses an orthogonal matrix E(x,t) to

reduce the matrix G2(X(t),t,O) to a block tridiagonal form so that the stable

* and unstable eigenspaces may be separated. The boundary layer corrections

k(c) and v(o) in Eqs. (3) compensate for the cancelled initial and terminal

conditions, respectively, and they can be determined once X(t) has been

computed (cf. Section 2). This process avoids complicated matching

-! procedures.

IIn Section 3 we discuss a numerical procedure for determining the

asymptotic approximation (Eq. (3)) which uses the general purpose two-point

boundary value code COLSYS to solve the reduced problem and then adds mMeri-

cal approximations to the boundary layer corrections. This approximation is

* considerably less expensive to obtain than solving the full stiff problem

2
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numerically and it has the advapitage of improving in accuracy, without any

additional computational cost, as the small parameter c tends to zero. How-

ever, when e is only moderately small our asymptotic approximation may not be

sufficiently accurate for some purposes, so we have developed a procedure (cf.

Section 3) that generates an improved solution by using COLSYS to solve the

complete problem (Eqs. (1) and (2)) with our asymptotic approximation as an

initial guess. In order for this approach to succeed we must also provide

COLSYS with an initial nonuniform mesh that is appropriately graded in the

boundary layers (cf. Ascher and Weiss') and we give an algorithm for

constructing such a mesh in Section 3. While our procedure does not appear to

be optimal, we show by an example involving the deformation of a nonlinear

elastic beam (cf. Section 4) that it does offer some advantage over the more

standard approach of continuation in e, where one starts with a large value of

. £e (e.g. e - 1) and a crude initial guess and reduces e in steps so that the

mesh is gradually concentrated into boundary layer regions.

We close Section 4 with a second nonlinear beam example that is beyond

the capabilities of our present methods because the matrix G2 is a function of

y. Flaherty and O'Malley 2 analyzed this problem and showed that its solution
S-

* becomes unbounded as e + 0. We include the numerical solution of this problem

in this paper in order to show one of the many challenging effects that can

1U. Ascher and R. Weiss, "Collocation For Singular Perturbation Problems I:
First Order Systems With Constant Coefficients," Technical Report 81-2, Dept.
Comp. Sci., University of British Columbia, 1981.

2j. E. Flaherty and R. E. O'Malley, Jr., "Singularly-Perturbed Boundary Value

Problems For Nonlinear Systems, Including a Challenging Problem For a Non-
linear Beam," Proceedings, Conference on Singulare Storungstheorie mit
Anwendungen, Oberwolfach, 1981.
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occur with singularly-perturbed problems.

Finally, in Section 5 we discuss our results and present some suggestions

for future investigations.

2. ASYMPTOTIC APPROXIMATION

In order to calculate the boundary conditions for the reduced problem

(Eqs. (5a) and (6)) and the boundary layer corrections P(T) and v(o) we

calculate the Schur decomposition of the matrix G 2 at t = 0 and t = 1. in

particular, at t = 0 we find an orthogonal matrix E(x(0)) such that

T-(x(O)) U(x(o))
G 2(x(O),O,O)E(x(O)) = E(x(0)) (7)

0 T+(x(0))

where T_ is k x k and upper triangular with the stable eigenvalues of G2 , afl(l

T+ is tipper triangular with the n-k unstable eigenvalues of G2 . The

decomposition (Eq. (7)) can often be obtained analytically; however, when this

is not possible or practical it can be determined numerically by using the QR

.tlg,[Lthm (cf. Golub and Wilkinson 3 and Ruhe4 for specific procedures).

We partition E after its kth column as

E - [E- E-(

and note that E_ spans the stable eigenspace of G 2 at t f 0 and

P = E_ ET (9)

3G. H. Golub and J. H. Wilkinson, "Ill-Conditioned Eigensystems and the

Computation of the Jordon Canonical Form," SIAM Review 18 (1976), pp.
578-619.

* 4A. Ruhe, "An Algorithm for Numerical Determination of the Structure of a
* General Matrix," BIT, 10 (1970), pp. 196-216.
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is a projection onto this eigenspace.

Near t - 0, we assume that the terminal layer correction v is negligible,

substitute the asymptotic approximation (Eq. (3)) into the differential

equations (Eqs. (lab)), use the reduced system (Eq. (5)), and retain only the

leading order terms to find that p(T) satisfies the conditionally stable

system

dII/dr - G2(0)u (10)

where (here and below) we use the argument t to denote conditions evaluated at

x(t) - X(t), t, and e 0, e.g.,

G2(0) := G2(X(0),O,O) (11)

Integrating Eq. (10)
G2(0)'r

P(t) - e P(O) (12)

We require that p(t) decays as T increases and this will be the case provided

that P(O) is in the stable eigenspace of G2(0); thus, using Eq. (9) we require

u(O) - P(0)P(O) - E-(O)E-T(0)u(0) (13)

Using Eqs. (3), (13), and (2b) in Eq. (lb) we find that the limiting

initial conditions have the form

al(0) + A2(0) [Y(O) + E-(O)ET(o)1I(0)j - 0 (14)

We assume that A2(0)E-(O) has its maximal rank k and construct a q x q matrix

LT - IL_T LTJ (15a)

that reduces it to row echelon form, i.e.,

A2 (0)E-(O) - (15b)

- . . . .,0

5



where V.- is k x k and nonsingular. Multiplying Eq. (14) by L and using Eqg.

(13) and (15) gives the initial layer jump and the q-k initial ccorilitioris fr

the reduced problem, respectively, as-

p(0 -40)V. 1La 1(X(O),O) + A2(X(O),O)Y(O)I 1a

and
'?D(X(O)) :=L...a1(X(O),O) + A2 (X(0),Q)Y(O)J = 0 .(16h)

We find the terminal layer jump and the r - (n-k) terminal conditions for

the reduced problem in an analogous fashion with the exception thiat we define

E(,K(1)) such that

T+(x(1)) U(x(1))
G2(x0i),1,0)E(x(1)) =E(x(1)) (17)

0 L..(x(0)

which we partition after its (n-k)th column as

E =[E+ E+] ($

in parallel with Eqs. (7) and (8), the matrices T.-, T+, and E+ contain the k

stable eigenvalues, the n-k unstable eigenvalues, and span the unstable etogez-

space, respectively, of G2 at t = 1. Our reasons for switching the positioli;

* of the matrices containing the stable and unstable eigenvalues of G2 is that

there is no simple and stable compuitational procedure for finding a set of

* vectors that span a given subspace and are not in the leading columns of In

orthogonal matrix like E (cf. Golub and Wilkinson3).

3G. H. Golub and J. H. Wilkinson, "Ill-Conditioned Eigensystems and the
* Computation of the Jordon Canonical Form," SIAM Review 18 (1976), pp.

578-619.



Now, following the procedure that we used for the initial layer, we find

that the terminal layer correction satisfies

G2(1)o
v(o) e v(O) (19)

In order for v(o) to decay as a increases we require v(a) to be in the

unstable eigenspace of G2(); thus, we take

v(O) - Q(1)v(O) - K+(l).,T(I)v(O) (20)

where Q is a projection onto the (n-k) dimensional unstable eigenspace of

G2(1).

We assume that B2(1)E+(1) has its maximal rank n-k and find a r x r

matrix

RT = IF+T R+T1 (21a)

that reduces it to the row echelon form

R+ B2(1)E+(1) V+ (21b)

R+ 0

where V+ is (n-k) x (n-k) and nonsingular. Multiplying Eq. (1d) by R, using

Eqs. (2c), (3), (20), and (21), and retaining only the leading order terms we

find the terminal layer jump and the r -(n-k) terminal conditions for the

reduced problem, respectively, as

v(O) - -E+(I)V+-R [bI(X(I),O) + B2(X(1),O)Y(1)] (22a)

and

Y(X(l)) :- R+[bl(X(1),O) + B2(X(1),O)Y(1)] 0 (22b)

4
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[n the interest of brevity, we have omitted several details of our

construction and have not attempted to justify the asymptotic validity of our

procedure. These topics will be the subject of a forthcoming paper by

O''Ialley and Flaherty. 5

3. NUMERICAL PROCEDURE

Our computational procedure coststs of first solving the reduced problen

(cf. Eqs. (5a), (6), (16b), and (22b)) numerically and then adding any

boundary layer corrections. Since the reduced problem is not stiff we can use

any good code for two-point boundary value problems (cf. Childs et al. 6 ) an-I

we have chosen o use the collocation code COLSYS of Ascher, Christiansen, aad

Ro{ssell. 7

Since the reduced problem is generally nonlinear and since COLSYS solves

nonlinear problems using a damped Newton method we have to supply formulas for

evaluating the Jacobians of f, Y, 0, and 'Y with respect to X. We do this by

providing analytical formulas for these Jacobians that neglect the influence

of the derivatives of E, L, R, and G 2 . This procedure has not failed on any

'I our examples; however, an alternate possibility would be to approximate the

lacobians by finite differences.

5 R. . ' alley, Jr., and J. E. Flaherty, "Numerical Methods For Stiff Syste;ns
of Two-Point Boundary Value Problems," to appear.

68. Childs, M. Scott, J. W. Daniel, E. Denman, and P. Nelson (Eds.), Codes For

Boundary-Value Problems in Ordinary Differential Equations, May 14-17, 1978,
Lecture Notes in Computer Science, No. 76, Springer-Verlag, Berlin, 1979.

71j. Ascher, 1. Christiansen, and R. D. Russell, "Collocation Software For

iomndary Value ODE's," ACM Trans. Math. Software, 7 (1981), pp. 209-222.



We start the Newton fteration with a uniform mesh and the default initial

guess X(O)(t) for X(t) that is provided by COLSYS and calculate successive

approximatigns X(P)(t) until convergence is attained. At each iteration step

we calculate an approximation E(P)(t) to E(t) for t = 0 and I as the Schur

decomposition of G2(X(P)(t),t,0). In the examples of Section 4 we used

analytical formulas for E rather than the numerical procedures of Golub and

Wilkinson 3 or Ruhe. 4 Finally, L(P) and R(P) are obtained using Gaussian

elimination to row reduce A2(X(P)(0),0)E-(P)(0) and B2(X(P)(1),O)E+(P)(1),

respectively.

When the above procedure converges we calculate boundary layer

corrections U(T) and v(a), for a given value of c, using Eqs. (12), (16a),

(19), and (22a), and add these to- the reduced solution in order to get the

0(e) asymptotic approximation (Eq. (3)). For moderately small values of c

this approximation may not provide a sufficiently accurate representation of

the solution and, in this case, we use it as an initial guess to COLSYS and

solve the complete problem (Eq. (1)). Unfortunately, this procedure will fail

unless we also provide COLSYS with an initial nonuniform partition

:-{0 - to  < tl < ... < tN 
=  }(23)

that is appropriately graded within the boundary layers. We seek to find i

that the pointwise error satisfies

1je(ti)jH < 6(1 + Ilu(ti)jj) , i = 1,2,...,N-1 (24)

3 G. H. Golub and J. H. Wilkinson, "Ill-Conditioned Eigensystems and the

Computation of the Jordon Canonical Form," SIAM Review 18 (1976), pp.
578-619.

4A. Ruhe, "An Algorithm for Numerical Determination of the Structure of a
General Matrix," BIT, 10 (1970), pp. 196-216.
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* where 6 is a prescribed tolerance, uT =xT,yTl, e is the difference between

*u and its collocation approximation, and

Ilu(ti)II := max lu(ti) I  (25)
Ij m+n

We have based our condition for determining ir on a pointwise error criteria

since this seerned to work better in practice than a global criteria. This is

somewhat surprising since COLSYS uses a global error criteria to select a

mesh.

We assume that the final partition selected by COLSYS to solve the

rduced problem satisfies equation (24) outside of boundary layer regions and

we seek to refine it ,ithin the boundary layers. We further assume that

4 Thrivatives of u can adequately be replaced by either ji(T) or v(a) in the left

or right boundary layer, respectively.

This problem was studied by Ascher and Weiss1 who showed that Eq. (24)

(-')(lld he approximately satisfied in the left boundary layer by choosing

mhlbintprval lengths as
... (+I l~ ti [) Il)1/2k

ti - ti-I = (--------------- (26)

for collocation at the image of k Gauss-Legendre points per subinterval. Here

C is A numerical constant and c- is the magnitude of the largest diagonal

l,,nt of T(X(O)). A similar formula can be obtained for selecting

-;lhi itorval Lengths in the right boundary Layer.

IU. Ascher and R. Weiss, "Collocation For Singular Perturbation Problems I:
First Order Systems With Constant Coefficients," Technical Report 81-2, Dept.
Co op. Sci., University of British Columbia, 1981.

1, 10
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Starting with i I we use Eq. (26) to generate a partition until we

either reach t - 1/2 or a point where a subinterval length selected by Eq.

(26) is larger than that used by COLSYS to solve the reduced problem. We then

repeat the procedure in the right boundary layer.

We have written a computer code called SPCOL that implements the

algorithms that are described in this section; thus, it (i) uses COLSYS to

solve the reduced problem, (ii) calculates and adds appropriate boundary layer

corrections to the reduced problem, and (iii) (optionally) suggests a mesh

that can be used by COLSYS to solve the complete problem.

4. EXAMPLES

In order to appraise the performance of SPCOL we have applied it to

several examples involving the deformation of a nonlinear elastic beam which

is resting on a nonlinear elastic foundation and is subjected to the combined

action of a horizontal end thrust P and a lateral load p(x,t) per unit length

(cf. Figure 1). This problem is discussed and analyzed in detail in Flahertv

and O'Malley 2 and herein we only present the governing equations, which in

dimensionless form are

x- Cos x , X2 = sin x3 , x3 = Yl (27a,b,c)

EYI -Y2 , EY2 (X2 x2-) cos x3 - TyI , (27d,e)

where

T sec x 3 + eY2 tan x3 (271)

2j. E. Flaherty and R. E. O'Malley, Jr., "Singularly-Perturbed Boundary Vale

Problems for Nonlinear Systems, Including a Challenging Problem For a Non-
linear Beam," Proceedings, Conference on Singulare Storungstheorie mit
Anwendungen, Oberwolfach, 1981.

11



The slow variables (xl,x2) and K3 represent the Cartesian coordinates and the

tangent angle of a material particle on the centerline of the beam that was at

the Cartesian location (t,O) in the undeformed state. The fast variables yj

and Y2 are the internal bending moment and transverse shear force,

respectively (cf. Figure 1). Finally, the small parameter is

C2 = EI/PL2 , (28)

where E1 is the flexural rigidity and L is the length of the beam; thus, our

beam is much stronger in extension than it is in bending.

This example does not precisely fit our hypotheses since the axial force

- T is a function of the fast variable Y2 and, thus, G2 also depends on y.67,,

However, our theory and methods will still apply as long as y remains boundei

and 1x31 < /.2 as c + 0. In order to illustrate the diverse behaviors that

can occur when y either does or does not remain bounded as c + 0 we present

solutions for two problems both having X = p = I and which differ only in

their boundary conditions. Some additional examples are presented in Flaherty

and O'Malley.
2,5

In our first example we take the boundary conditions as

xl( 0 ) w 0 , -lOx2(0) + Y2(O) = 0 , -x3(O) + lOy1(O) = 0
(29)

10x2(l) + y2(0) = 0 , 10x3(1) + y1(0) = 0

2j. E. Flaherty and R. E. O'Malley, Jr., "Singularly-Perturbed Boundary Value

Problems for Nonlinear Systems, Including a Challenging Problem For a Non-
linear Beam," Proceedings, Conference on Singulare Storungstheorie mit
4Anwendungen, Oberwolfach, 1981.
5R. E. O'Malley, Jr., and J. E. Flaherty, "Numerical Methods For Stiff Systems
of Two-Point Boundary Value Problems," to appear.

12
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These supports correspond the a beam that is almost simply supported at t

* and almost clamped at t - 1. However, perhaps due to friction, there is son,.,

coupling between lateral and rotational effects at the supports.

As we shall see, y remains bounded in this example so our methods are

applicable. The orthogonal matrix

I -
E(x(0)) (1+a2 )- 1/ 2  (,Hj

a I

where
a2 - sec x3(O) ( 3w2

, reduces

0 -l
G2 (x(O),0,0) (31)

to the Schur form given by equation (7) at t 0 and ET will reduce

G2(x(1),1,0) to the form given by Eq. (17) at t = I.

We solved this problem in two ways: (i) using COLSYS to solve the

complete problem (Eqs. (27) and (29)) with continuation from a large to a

small value of e and (ii) using our code SPCOL to compute an initial

asymptotic approximation and to recommend a nonuniform mesh and using this

' with COLSYS to calculate an improved solution. All calculations were

performed in double precision on an IBM 3033 computer, used two collocati,,1

* points per subinterval, and set the error tolerance 6 (cf. Eq. (24)) at 1,,- b

: for slow variables and 10- for fast variables.

Our results for the normalized CP times and the number of subintervals

S(NSUB) that are either used by COLSYS or recommended by SPCOL are shown ini

I1
13



Tables I and II for continuatiol in e and our methods, respectively. Differ-

ences between our initial asymptotic approximation and the final solution

obtained by COLSYS are shown for x3 and Y2 at t - 0 and I in Table III. We

see that the differences decrease like 0(c) as expected. Differences that are

recorded as zero are less than 108. Finally, we exhibit solutions for x2,

x3, Yl, and Y2 in Figure 2.

TABLE I. NONLINEAR ELASTICALLY SUPPORTED BEAM. NUMBER OF SUBINTERVALS (NSIJB)
AND CP TIMES USED TO SOLVE THE PROBLEM BY COLSYS WITH CONTINUATION
IN e. THE TOTAL CP IS THE ACCUMULATED TIME FOR THE e SEQUENCE.

e NSUB CP Total CP

10-1 80 8.0 8.0
10- 2  78 9.0 17.0
10- 4 78 19.5 36.5
10- 6  156 44.5 81.0
10-8 100 19.0 100.0

TABLE II. NONLINEAR ELASTICALLY SUPPORTED BEAM. NUMBER OF SUBINTERVALS
(NSUB) AND CP TIMES TO SOLVE THE PROBLEM BY SPCOL AND OBTAIN AN
IMPROVEMENT BY COLSYS. THE CP TIMES FOR SPCOL INCLUDE THE TIME TO
CALCULATE THE REDUCED SOLUTION WHICH WAS 4.8 TIME UNITS.
CORRECTION NO. I USES THE MESH THAT WAS RECOMMENDED BY SPCOL.
CORRECTION NO. 2 USES A MESH THAT IS TWICE AS COARSE. THE TOTAL CP
IS THE SUM OF THE TIMES FOR THE SPCOL AND COLSYS SOLUTIONS.

COLSYS COLSYS
E SPCOL Correction No. I Correction No. 2

Rec. No.
e of NSUB CP NSUB CP Total CP NSUB CP Total CP

10- 1  40 4.9 100 12.0 16.9 80 12.1 16.9
* 10-2 45 4.9 90 12.0 16.9 78 8.1 12.9

10-4 54 4.9 108 16.9 21.8 66 9.2 14.1
10-8  55 4.9 110 17.5 22.3 Failed
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TABLE III. NONLINEAR ELASTICALLY SUPPORTED BEAM. DIFFERENCES BETWEEN SPCOL

AND COLSYS SOLUTION§, WHERE ) :- I( )SPCOL - ( )COLSYSl

C 4Ax3 (O) Ay2(O) AX3(1) Ay2( 1)

40 - 1  3.3x1O- 1  5.lxl0-2 6.8x10 -  3.6x10- 1

10-2 2.8x10- 2  6.6x10- 3  6.Ix10- 2  3.9x10 - 2

10-4 2.7x 10-  6.8x10- 5  6.1I10-  3.9x10 - 4

10-8 0 1.3x10- 7  0 0

The results reported in Tables I and II need some additional explanation.

The number of subintervals and CP times used with continuation depended heav-

* ily on the e sequence that was used. The results in Table I are about the

*. best insofar as they gave the smallest total CP time for the sequence. In

1] addition, COLSYS relies on the difference between solutions that arp computed

* on two different partitions in order to estimate local errors. Thus, at a

. minimum, COLSYS would always double our suggested mesh. This is apparent in

the results listed under the heading of "COLSYS Correction No. 1" in Table II.

In some sense these results are encouraging insofar as they indicate that our

mesh selection strategy is doing about as well as it can, at least for

e 4 10-2. However, it seems that fewer points should be necessary, so we

tried giving COLSYS an initial mesh that consisted of every other point of our

": recommended mesh. This is clearly a risky strategy since collocation at the

Gauss-Legendre points is known to be unstable unless the mesh is sufficiently

fine in the boundary layers (cf. Ascher and Weissl). Our results using this

1U. Ascher and R. Weiss, "Collocation For Singular Perturbation Problems I:
First Order Systems With Constant Coefficients," Technical Report 81-2, Dept.
Comp. Sci., University of British Columbia, 1981.
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are reported under the heading of "COLSYS Correction No. 2" in Table 1I. Some

- improvement is noted for e > 10-4; however, COLSYS failed to find a solution

* (within our prescribed limitations) when e = 10- 8 .

In our second example we use the boundary conditions

xl(0) = 0 , .-x2(0) + CY2(0) - 0 , -x3(O) + e2yl(0) = 0
(32)

x2(1) + cY2(I) - 0 , x3(1) + c 2 yI(l) = 0

If c were set to zero then these boundary conditions would correspond to

clamped supports at t - 0 and 1. Since the limiting boundary conditions only

involve the slow variables and since the slow vector x cannot generally

satisfy all of them as e + 0 we would expect the solution to have boundary

layers in these components. This in turn will force the fist vector y to

become unbounded like 0(1/) at the endpoints! Thus, this problem does not

have an asymptotic expansion having the form of Eq. (3); however, an

appropriate asymptotic representation of a solution has been obtained by

Flaherty and O'Malley.2 We shall not repeat those results here, but in order

to emphasize the diverse behavior that can occur in nonlinear singularly-

* -"rturhed problems, we present solutions for x2, x3, cyl, and cY2 in Figure 3.

These solutions were computed using COLSYS with continuation in c.

*5. DISCUSSION

We have obtained asymptotic approximations for a restricted class of

- nonlinear singularly-perturbed boundary value problems and have shown how to

* 2j. E. Flaherty and R. E. O'Malley, Jr., "Singularly-Perturbed Boundary Value
Problems For Nonlinear Systems, Including a Challenging Problem For a Non-
linear Beam," Proceedings, Conference on Singulare Storungstheorie mit
Anwendungen, Oberwolfach, 1981.
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construct them numerically and uise them to suggest a nonuniform mesh that may

be used as input to a two-point boundary value code in order to calculate

improved solutions. Clearly this approach offers some advantages over the

more standard technique of continuation in c steps; however, the picture is

* far from clear and several questions still remain as to how best to use

asymptotic analysis in conjunction with numerical analysis.

As we have shown in our second excample of Section 4, very diverse

behavior in the solution of singularly-perturbed problems can result from

seemingly minor changes in boundary conditions. Some phenomena cannot easily

be predicted, so perhaps a sensible course to follow is to use asymptotic and

numerical methods in tandem. For example, a rough numerical solution could be

* obtained for peveral values of e which could then be used to suggest the form

of an asymptotic solution. The asymptotic approximation could then be used to

* refine the numerical solution, and so on. It is also possible that singular

perturbation theory could be used to construct special methods that are

* appropriate for specific problems as e.g., in Flaherty and Mathon8 and

Ascher and Weiss. I

Throughout our discussion we have ignored the question of uniqueness. In

general, multiple solutions can be expected and they must be coped with

1U. Ascher and R. Weiss, "Collocation For Singular Perturbation Problems I:
First Order Systems With Constant Coefficients," Technical Report 81-2, Dept.
Comp. Sci., University of British Columbia, 1981.8J. E. Flaherty and W. Hathon, "Collocation With Polynomial and Tension
Splines For Singularly-Perturbed Boundary Value Problems," SIAM J. Sci. Stat.
Comput, 1, (1980), pp. 260-289.
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numerically. In Reference 9 we showed how asymptotic methods may be used to

distinguish the different solutions and to provide initial guesses for a

two-point boundary value code.

* 9 J. E. Flaherty and R. E. O'Malley, Jr., "On the Numerical Integration of Two-
* Point Value Problems For Stiff Systems of Ordinary Differential Equations,"

Boundary and Interior Layers - Computational and Asymptotic Methods, *J. J. H.
91iller, Editor, Boole Press, Dublin, 1980, pp. 93-102.
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Figure 1. Geometry, loading, force, and mroment conve'ntions
for nonlinear beam.
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Figure 2. Numerical solution of elastically supported beam with boundary

conditions given by Equations (29).
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Figure 3. Numerical solution of elastically supported beam with boundary
conditions given by Equations (32). Note that y1 and Y2are
multiplied by e.
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